Translate

21 July 2016

KERUSAKAN PADA POMPA CENTRIFUGAL



Selamat sore kali ini kami sajikan “Penyebab kerusakan pada pompa centrifugal terutama dari sisi Mekanikal”, karena kebetulan hari-hari kita diMaintenance Mekanik. Yang kami maksud di sini adalah kerusakan pada hampir segala jenis pompa centrifugal baik pompa air rumah tangga hingga pompa industri. 

Hal paling mendasar yang harus diketahui adalah hampir sebagian besar pompa yang umum digunakan adalah pompa centrifugal. Kami akan menjelaskan secara singkat dengan bahasa yang mudah dimengerti apa itu pompa centrifugal. Ciri khas pompa centrifugal adalah memiliki impeller. Impeller lah yang bekerja untuk merubah aliran air yang pelan menjadi bertekanan tinggi dengan gaya centripetal yang dilakukannya. Jadi ingat! Bila pompa memiliki impeller, pompa itu hampir pasti merupakan pompa centrifugal. Pompa piston, vane, gir (gear pump), membran dan lain-lain bukan termasuk kategori pompa centrifugal.

Artikel ini akan membahas kerusakan yang tidak disebabkan oleh faktor listrik. Pembahasan lebih ke sisi mekanis. 


PERAWATAN POMPA (MAINTENANCE)

Pompa memiliki komponen yang terus bergerak seperti halnya pada mobil, motor, atau mesin industri lainnya. Dengan adanya komponen yang sering bergerak, maka aus akan timbul. Seperti halnya kita teratur membawa kendaraan bermotor kita untuk diperiksa (service) ke bengkel, maka pompa juga harus teratur di rawat (maintenance). Sering kali pihak pemakai tidak mempedulikan kondisi pompa dan baru melapor ke service centre saat mengalami kekurangan air yang disebabkan gangguan pada pompa. Biasanya yang terjadi adalah suku cadang (spare-part) pada pompa sudah aus sehingga performa pompa menurun atau bahkan pompa menjadi rusak. Solusinya adalalah dengan menyiapkan jadwal maintenance yang teratur (untuk pihak industri/komersial yang memiliki teknisi sendiri) dan memanggil teknisi service ke rumah atau membawa pompa ke service centre untuk diperiksa (untuk pihak rumah tangga).

DILARANG MENYALAKAN POMPA SAAT TIDAK ADA AIR

Sering kali kali melihat pihak yang melakukan pengetesan pompa saat tidak ada air pada pompa. Dengan kata lain pompa dinyalakan saat tidak ada air (dry-running). Baik hal itu dilakukan saat pembelian pompa baru atau dilakukan untuk memeriksa pompa yang sedang diperiksa. Bila hal tersebut dilakukan hanya sebentar (beberapa detik) tentu tidak begitu bermasalah, akan tetapi terkadang dilakukan dalam jangka waktu yang lebih lama. Bila pompa dinyalakan tanpa air dalam waktu lama akan menyebabkan kerusakan pada suku cadang misalnya pada mechanical seal, impeller, diffuser, casing pompa, dan lain-lain. Akan tetapi terkadang hal ini bisa juga terjadi tidak disengaja misanya tidak ada yang mengawasi saat air sudah habis karena pompa menyala secara manual. Atau hal tersebut terjadi karena Water Level Control tidak berjalan dengan semestinya.


PEMIPAAN HARUS BENAR

Pemipaan yang tidak tepat dapat menimbulkan gangguan pada pompa. Gangguan tersebut dapat mulai dari ukuran pipa yang tidak sesuai dengan pompa (misalkan pengunaan pipa dengan ukuran yang lebih kecil dari sambungan pompa). Selain itu dapat disebabkan oleh pengunaan fitting dan valve yang tidak sesuai atau posisi pemasangan yang kurang tepat. Posisi belokan pada pemipaan harus benar secara hidrolika air. Posisi yang bisa menyebabkan terjebaknya gelembung udara pada bagian hisap pipa harus dihilangkan. Pemipaan sedapat mungkin diatur untuk mengurangi gaya gesek pada pipa (friction loss).

Jalur pemipaan harus dibuatkan dudukan atau supportnya agar tidak mudah bergerak. Pengunaan flexible joint disarankan untuk mencegah getaran yang berlebih pada pemipaan. 

Berdasarkan pengalaman kami, sebagian dari permasalahan yang timbul pada pompa disebabkan oleh sistem pemipaan yang kurang tepat.
POSISI POMPA

Posisi peletakan pompa juga dapat mempengaruhi daya tahan pompa. Misalkan pompa diletakan di ruangan yang lembab, maka bila pompa tersebut terbuat dari bahan logam, pompa tersebut akan mudah mengalami korosi. Ruangan yang panas dan tidak memiliki cukup ventilasi atau pertukaran aliran udara juga akan mempengaruhi pompa khususnya di motor listriknya. 

Selain itu untuk pompa yang dikopel dengan motor listriknya, harus dipastikan posisi sambungan kopel benar (center). 

Sambungan pipa pada pompa harus pas dan tidak ada tarik-menarik antara pompa dan pipa yang dapat menyebabkan pompa bergeser atau tertarik.


KETEPATAN POMPA YANG DIGUNAKAN

Yang dimaksud dengan ketepatan pompa yang digunakan adalah apakah anda sebagai pihak pemakai sudah yakin bahwa pompa yang sekarang digunakan atau yang akan digunakan sudah benar? Misanya untuk pompa yang akan digunakan untuk memindahkan cairan (transfer pump) cocok dengan cairan tersebut? Misal anda akan memindahkan cairan kimia, cairan kental atau cairan solar yang kesemuanya itu akan membutuhkan tipe pompa yang berbeda yang terbuat dari bahan yang juga berbeda tergantung dengan kecocokan (material compatibility) antara cairan dengan pompa. 

Selain itu juga harus dipastikan spesifikasi pompa sudah tepat. Hal ini bisa dilakukan dengan menambahkan kalkulasi hidrolik air (head loss, friction loss, dll) ke nilai operasi pompa (duty point). Karena bila kalkulasi hidrolik air diabaikan, pompa yang seharusnya sudah tepat spesifikasinya di atas kertas akan menjadi tidak cukup performanya.
Demikian pembahasan singkat akan penyebab kerusakan pada pompa dalam sisi mekanis. Para pembaca sekalian tentu dengan ini akan menyadari bahwa kerusakan pada pompa dapat disebabkan oleh faktor lain seperti kurangnya perawatan, kesalahan pemipaan, tidak memperhitungkan hidrolik air, dan lainnya. Satu faktor lain yang tidak kami bahas mendetail di atas adalah faktor Human Error yang sebenarnya juga berkontribusi atas kerusakan pompa. Yang dimaksud faktor Human Error adalah faktor di mana pompa rusak dikarenakan kesalahan pengoperasian atau prosedural oleh operator atau kurangnya pengetahuan cara perbaikan pompa oleh pihak yang mencoba memperbaiki pompa tersebut sendiri. Akan tetapi faktor ini sangat sulit diketahui karena terkadang tidak diketahui telah terjadi kesalahan.

APAKAH DENGAN MEMPERKECIL UKURAN PIPA AKAN MEMPERBESAR TEKANAN AIR ?



Kami akan secara teratur membahas mengenai dasar-dasar hidrodinamika air untuk sistem pemompaan. Pembahasan hidrodinamika ini akan berfokus pada mekanika fluida aliran air pada pipa. Kami akan mencoba membahas artikel ini sesederhana mungkin agar dapat dipahami oleh khalayak ramai yang tidak memiliki latar belakang teknis.
Artikel ini kami akan membahas miskonsepsi (kesalahpahaman) yang sangat umum terjadi pada pemipaan. Pada umumnya sebagian besar masyarakat (orang awam) selalu mempunyai persepsi “Dengan memperkecil ukuran pipa akan meningkatkan tekanan air”. Dengan sangat menyesal kami harus mengatakan bahwa pendapat tersebut adalah salah besar. Setelah puluhan tahun bergerak di bidang pompa, kami telah banyak mendengar penjelasan dari client maupun melihat langsung kesalahpahaman ini di lapangan.
Mengapa kesalahan ini sering terjadi? Hal ini dikarenakan pada umumnya masyarakat mengacu pada prinsip selang air. Mereka berpendapat bahwa bila ujung selang ditekan dengan jari, biasanya akan terasa aliran air lebih kencang saat keluar dari selang dan dapat menyembur lebih jauh. Maka sangat logis bila orang berasumsi dengan mengecilkan ukuran pipa maka tekanan air akan kencang seperti halnya dalam prinsip selang yang ditekan yang tentu saja tidak benar.
Kami akan memberikan beberapa penjelasan kepada anda mengapa memperkecil ukuran pipa tidak bisa meningkatkan tekanan air.
I. Prinsip Bernoulli Pada Pipa
Penjelasan paling sederhana adalah menggunakan Prinsip Bernoulli yang ditemukan oleh Daniel Bernoulli pada tahun 1738. Dalam keadaan ideal, Bernoulli menyatakan bahwa ketika kecepatan cairan pada suatu penampang (pipa) bertambah, maka tekanan cairan tersebut akan berkurang. Sebagai ilustrasi akan kami perlihatkan diagramnya di bawah ini.



Low Velocity = Kelajuan (kecepatan) rendah
High Velocity = Kelajuan (kecepatan) tinggi
Low Pressure = Tekanan rendah
High Pressure = Tekanan tinggi
Bisa diperhatikan pada gambar di atas, saat luas penampang pipa diperkecil, tekanan air berkurang dan kelajuan (kecepatan) air meningkat. Dan sebaliknya saat luas penampang pipa diperbesar, tekanan meningkat dan kelajuan (kecepatan) air berkurang. Jelas terlihat berdasarkan Prinsip Bernoulli bahwa bila luas penampang diperkecil maka yang meningkat adalah kelajuan air dan bukan tekanannya. hal ini disebabkan oleh Efek Venturi. Efek Venturi, sesuai dengan Hukum Kekekalan Energi menyatakan bahwa kecepatan suatu cairan akan bertambah ketika melewati ruang yang lebih sempit guna mempertahankan debit (kapasitas per satuan waktu) cairan tersebut sehingga tekanan cairan saat melewati ruang yang lebih sempit tersebut harus turun akibat perubahan energi dari energi potensial tekanan menjadi energi kinetik.

Kami rasa dengan adanya Prinsip Bernoulli dan Efek Venturi yang tergolong ilmu fisika yang menjadi bagian dari hukum alam ini akan membantu para pembaca untuk menjelaskan kesalah-pahaman yang sudah terjadi.


II. Pengaruh Gaya Gesek (Friction Loss) Pada Pipa
Pembahasan sebelumnya yang menggunakan asas Prinsip Bernoulli berdasarkan kondisi ideal. Tentu saja pada kenyataannya tidak ada kondisi ideal. Oleh karena itu kami akan membahas mengenai pengaruh gaya gesek cairan dengan pipa penampangnya. Semua cairan yang terdapat di dunia ini saat bergerak akan menimbulkan gaya gesek dengan penampangnya. Dalam hal ini kita ambil contoh air. Saat air bergerak berpindah dari satu tempat ke tempat lain melalui pipa, maka akan timbul gaya gesek antara cairan tersebut dengan pipa tersebut. Semakin tinggi kelajuan (kecepatan) pergerakan air tersebut, maka makin tinggi juga gaya gesek cairan dengan pipa.

Apa itu gaya gesek (friction loss)? Harap diperhatikan istilah Inggris yang tepat untuk gaya gesek adalah friction force. Tetapi untuk pemipaan ini digunakan istilah friction loss. Dan friction loss ini merupakan bagian dari Head Loss dari suatu sistem pemipaan. Arti sederhana gaya gesek adalah suatu gaya yang melawan laju aliran dari suatu cairan yang mengalir. Dalam halnya pipa di air, gaya gesek pipa di air akan melawan laju aliran air sehingga kelajuan (kecepatan) air akan berkurang yang secara otomatis nilai tekanan air juga berkurang. Di dalam kehidupan kita sehari-hari gaya gesek terdapat di mana saja. Mulai dari ban mobil yang bergerak, mendorong peti di atas lantai, maupun aliran air pada pipa.



Tabel di atas memperlihatkan nilai Head Loss/Friction loss (gaya gesek) dari suatu merek selang fleksibel 1.5". Terlihat dengan meningkatnya debit (kapasitas/satuan waktu) dari air, maka nilai gaya gesek tersebut juga naik. Gaya gesek yang meningkat akan menyebabkan total tekanan air pada pipa semakin berkurang.


III. Kesimpulan

Bila prinsip gaya gesek ini kita gabungkan dengan Prinsip Bernoulli maka anda akan melihat secara jelas bahwa memperkecil ukuran pipa TIDAK akan menaikan tekanan air pada pipa. Yang terjadi malah sebaliknya, memperkecil ukuran pipa AKAN menurunkan tekanan air pada pipa! Hal ini dikarenakan memperkecil ukuran pipa akan menurunkan tekanan dan ditambah karena kelajuan (kecepatan) air yang meningkat akan menyebabkan gaya gesek pipa pada air juga meningkat. Tekanan air yang telah menurun karena pengecilan pipa (sesuai dengan Prinsip Bernoulli) ditambah dengan gaya gesek (friction loss) air dengan pipa akan menyebabkan tekanan total air pada pipa akan berkurang secara drastis! Oleh karena itu ukuran pipa harus disesuaikan dengan kondisi lapangan, debit air yang mengalir dan jalur pipa yang ada.

Dikutip dari artikel Pak Iwan Budiman Putra

KAVITASI POMPA



Banyak pemahaman mengenai Kavitasi ini tetapi coba kita pelajari bersama, kalau menurut salah satu artikel yang saya baca dan copy pengertian Kavitasinya sebagai beriut :Kavitasi adalah fenomena perubahan phase uap dari zat cair yang sedang mengalir, karena tekanannya berkurang hingga di bawah tekanan uap jenuhnya. Pada pompa bagian yang sering mengalami kavitasi adalah sisi isap pompa. Hal ini terjadi jika tekanan isap pompa terlalu rendah hingga dibawah tekanan uap jenuhnya, hal ini dapat menyebabkan :
  • Suara berisik, getaran atau kerusakan komponen pompa tatkala gelembung-gelembung fluida tersebut pecah ketika melalui daerah yang lebih tinggi tekanannya
  • Kapasitas pompa menjadi berkurang
  • Pompa tidak mampu membangkitkan head (tekanan)
  • Berkurangnya efisiensi pompa.
Secara umum, terjadinya kavitasi diklasifikasikan atas 5 alasan dasar :
1. Vaporisation - Penguapan.
Fluida menguap bila tekanannya menjadi sangat rendah atau temperaturnya menjadi sangat tinggi. Setiap pompa sentrifugal memerlukan head(tekanan) pada sisi isap untuk mencegah penguapan. Tekanan yang diperlukan ini, disiapkan oleh pabrik pembuat pompa dan dihitung berdasarkan asumsi bahwa air yang dipompakan adalah 'fresh water' pada suhu 68oF. Dan ini disebut Net Positive Suction Head Available (NPSHA)
Karena ada pengurangan tekanan (head losses) pada sisi suction( karena adanya valve, elbow, reduser, dll), maka kita harus menghitung head total pada sisi suction dan biasa disebut Net Positive Suction Head is Required (NPSHR).
Nah nilai keduanya mempengaruhi terjadinya penguapan, maka untuk mencegah penguapan, syaratnya adalah :
NPSHA - Vp ≥ NPSHR
Dimana Vp : Vapor pressure fluida yang dipompa.
Dengan kata lain untuk memelihara supaya vaporization tidak terjadi maka kita harus melakukan hal berikut :
1. Menambah Suction head, dengan :
  • Menambah level liquid di tangki.
  • Meninggikan tangki.
  • Memberi tekanan tangki.
  • Menurunkan posisi pompa(untuk pompa portable).
  • Mengurangi head losses pada suction piping system. Misalnya dengan mengurangi jumlah fitting, membersihkan striner, cek mungkin venting tangki tertutup) atau bertambahnya speed pompa.
2. Mengurangi Tempertur fluida, dengan :
  • Mendinginkan suction dengan fluida pendingin
  • Mengisolasi suction pompa
  • Mencegah naiknya temperature dari bypass system dari pipa discharge.
3. Mengurangi NPSHR, dengan :
  • Gunakan double suction. Ini bias mengurangi NPSHR sekitar 25 % dan dalam beberapa kasus memungkinkan penambahan speed pompa sebesar 40 %.
  • Gunakan pompa dengan speed yang lebih rendah.
  • Gunakan impeller pompa yang memiliki bukaan 'lobang' (eye) yang lebih besar.
  • Install Induser, dapat mereduksi NPSHR sampai 50 %.
  • Gunakan pompa yang lebih kecil. Menggunakan 3 buah pompa kecil dengan ukuran kapasitas separuhnya, hitungannya lebih murah dari pada menggunakan pompa besar dan spare-nya. Lagi pula dapat menghemat energy.
 KAVITASI PADA POMPA (II)



Pada bagian pertama tulisan yang lalu, kita telah mengenal apa itu kavitasi, efek yang ditimbulkannya dan klasifikasi kavitasi,yaitu :

1. Vaporisation - Penguapan.
Selanjutnya kita kaji secara singkat klasifikasi yang kedua 

2. Air Ingestion - Masuknya Udara Luar ke Dalam System
Pompa sentrifugal hanya mampu meng'handle' 0.5% udara dari total volume. Lebih dari 6% udara, akibatnya bisa sangat berbahaya, dapat merusak komponen pompa.
Udara dapat masuk ke dalam system melalui beberapa sebab, antara lain :
  • Dari packing stuffing box (Bagian A - Lihat Gambar). Ini terjadi, jika pompa dari kondensor, evaporator atau peralatan lainnya bekerja pada kondisi vakum.
  • Letak valve di atas garis permukaan air (water line).
  • Flens (sambungan pipa) yang bocor.
  • Tarikan udara melalui pusaran cairan (vortexing fluid).
  • Jika 'bypass line' letaknya terlalu dekat dengan sisi isap, hal ini akan menambah suhu udara pada sisi isap.
  • Berkurangnya fluida pada sisi isap, hal ini dapat terjadi jika level cairan terlalu rendah.


 Vortexing Fluida
Keduanya, baik penguapan maupun masuknya udara ke dalam system berpengaruh besar terhadap kinerja pompa yaitu pada saat gelembung-gelembung udara itu pecah  ketika melewati 'eye impeller'(Bagian G - Lihat Gambar) sampai pada sisi keluar (Sisi dengan tekanan yang lebih tinggi). Terkadang, dalam beberapa kasus dapat merusak impeller atau casing. Pengaruh terbesar dari adanya jebakan udara ini adalah berkurangnya kapasitas pompa.

3. Internal Recirculation - Sirkulasi Balik di dalam System
Kondisi ini dapat terlihat pada sudut terluar (leading edge) impeller, dekat dengan diameter luar, berputar balik ke bagian tengah kipas. Ia dapat juga terjadi pada sisi awal isap pompa.
Efek putaran balik ini dapat menambah kecepatannya sampai ia menguap dan kemudian 'pecah' ketika melalui tempat yang tekanannya lebih tinggi. Ini selalu terjadi pada pompa dengan NPSHA yang rendah. Untuk mengatasi hal tersebut, kita harus tahu nilai Suction Spesific Speed , yang dapat digunakan untuk mengontrol pompa saat beroperasi, berapa nilai terdekat yang teraman terhadap nilai BEP(Best Efficiency Point)  pompa yang harus diambil untuk mencegah terjadinya masalah.
Nilai Suction Spesific Speed yang diijinkan adalah antara 3.000 sampai 20.000. Rumus yang dipakai adalah :




Dimana :         
 rpm           = Kecepatan Pompa
Capacity    = Gallons per menit, atau liters per detik  dari impeller   terbesar pada nilai BEP(Best Efficiency Point) -nya.
Head         = Net Positive Suction Head is Required (feet atau meter)pada nilai rpm-nya.
Catatan penting :
  • Untuk pompa double suction, kapasitas dibagi 2 karena ada 2 impeller eyes.
  • Ideal untuk 'membeli' pompa dengan nilai Suction Spesific Speed kurang dari 8500(5200 metrik) kecuali untuk kondisi yang ekstrim.
  • Mixed Hydrocarbon dan air panas idealnya pada 9000 ÷ 12000 (5500÷7300 metric) atau lebih tinggi, lebih bagus.
  • Nilai Suction Spesific Speed yang tinggi menandakan impeller eye-nya lebih besar dari biasanya dan biasanya nilai efisiensinya disesuaikan dengan nilai NPSHR yang rendah.
  • Lebih tinggi nilai Suction Spesific Speed memerlukan desain khusus, operasinya memungkinkan adanya kavitasi.
  • Biasanya, pompa yang beroperasi dibawah 50% dari nilai BEP-nya tidak reliable.



Jika kita memakai open impeller, kita dapat mengoreksi internal recirculation dengan mengatur suaian(clearance) impeller sesuai dengan spesifikasi pabrik pembuatnya.




Jenis impeller
Untuk jenis Closed Impeller lebih banyak masalahnya dan kebanyakan pada prakteknya dikembalikan ke pabrik pembuatnya untuk di evaluasi atau mungkin didesain ulang pada impellernya atau perubahan ukuran suaian(clearance) pada wearing ring.

KAVITASI PADA POMPA (III)
 
Pada dua tulisan yang lalu : di sini dan di sini, kita telah mengenal apa itu kavitasi, efek yang ditimbulkannya dan klasifikasi kavitasi,yaitu :

1. Vaporisation - Penguapan.
2. Air Ingestion - Masuknya Udara Luar ke Dalam System
3. Internal Recirculation - Sirkulasi Balik di dalam System
Selanjutnya kita kaji secara singkat klasifikasi yang keempat :
4. Turbulence - Pergolakan Aliran
Kita selalu menginginkan aliran fluida pada kecepatan yang konstan. Korosi dan hambatan yang ada pada system perpipaan dapat merubah kecepatan fluida dan setiap ada perubahan kecepatan, tekanannya juga berubah. Untuk menghambat hal tersebut, perlu dilakukan perancangan system perpipaan yang baik. Antara lain memenuhi kondisi berikut :
Jarak minimum antara suction pompa dengan elbow yang pertama minimal 10 X diameter pipa.Pada pengaturan banyak pompa, pasang suction bells pada bays yang terpisah, sehingga satu sisi isap pompa tidak akan mengganggu yang lainnya. Jika ini tidak memungkinkan, beberapa buah pompa bisa dipasang pada satu bak isap (sump) yang besar, dengan syarat :
o    Posisi pompa tegak lurus dengan arah aliran.
    • Jarak antara dua 'center line' pompa minimum dua kali suction diameter.
    • Semua pompa dalam keadaan 'runing'.
    • Bagian piping upstream paling tidak memiliki pipa yang lurus dengan panjang minimal 10 x diameter pipa.
    • Setiap pompa harus memiliki kapasitas kurang dari 15.000 gpm.
    • Suaian dasar pompa seharusnya sekitar 30% diameter pipa isap.
    • Hubungan kedalaman pemasangan pompa dengan kapasitas disesuaikan dengan table berikut :
Kapasitas
Kedalaman Minimum
20,000 GPM
4 FEET
100,000 GPM
8 FEET
180,000 GPM
10 FEET
200,000 GPM
11 FEET
250,000 GPM
12 FEET
·         Untuk metrik :
Kapasitas
Kedalaman Minimum
4,500 M3/HR
1.2 METERS
22,500 M3/HR
2.5 METERS
40,000 M3/HR
3.0 METERS
45,000 M3/HR
3.4 METERS
55,000 M3/HR
3.7 METERS
5. Vane Passing Syndrome
Kerusakan akibat kavitasi jenis ini terjadi ketika diameter luar impeller lewat terlalu dekat dengan 'cutwater' pompa. Kecepatan aliran fluida ini bertambah tatkala alirannya melalui lintasan kecil tersebut, tekanan berkurang dan menyebabkan penguapan lokal. Gelembung udara yang terbentuk kemudian pecah pada tempat yang memiliki tekanan yang lebih tinggi, sedikit diluar alur cutwater. Hal inilah yang menyebabkan kerusakan pada volute(rumah keong) pompa.
Untuk mencegah pergerakan poros yang berlebihan, beberapa pabrik pembuat memasang bulkhead rings pada suction eye. Pada sisi keluar (discharge), ring dapat dibuat untuk memperpanjang sisi keluar dari dinding discharge sampai selubung impeller.

PENGARUH KAVITASI TERHADAP KINERJA POMPA
 
Pada empat tulisan sebelumnya kita telah mengenal pengaruh kavitasi dan klasifikasi kavitasi berdasarkan penyebab utamanya.
Kali ini kita kembali memperdalam pengaruh kavitasi ini secara lebih detil. Sebelumnya kita telah tahu pengaruh kavitasi secara umum adalah sebagai berikut :
  • Berkurangnya kapasitas pompa
  • Berkurangnya head (pressure)
  • Terbentuknya gelembung-gelembung udara pada area bertekanan rendah di dalam selubung pompa (volute)
  • Suara bising saat pompa berjalan.
  • Kerusakan pada impeller atau selubung pompa(volute).
Pada tulisan ini akan kita bahas kenapa semua itu bisa terjadi.
Kavitasi dinyatakan dengan cavities atau lubang di dalam fluida yang kita pompa. Lubang ini juga dapat dijelaskan sebagai gelembung-gelembung, maka kavitasi sebenarnya adalah pembentukan gelembung-gelembung dan pecahnya gelembung tersebut. Gelembung terbentuk tatkala cairan mendidih. Hati-hati untuk menyatakan mendidih itu sama dengan air yang panas untuk disentuh, karena oksigen cair juga akan mendidih dan tak seorang pun menyatakan itu panas.
Mendidihnya cairan terjadi ketika ia terlalu panas atau tekananya terlalu rendah. Pada tekanan permukaan air laut 1 bar (14,7 psia) air akan mendidih pada suhu 212oF (100oC). Jika tekanannya turun air akan mendidih pada suhu yang lebih rendah. Ada tabel yang menyatakan titik didih air pada setiap suhu yang berbeda. Sebagai contoh dapat dilihat tabel berikut :
Fahrenheit
Centigrade
Vapor pressure lb/in2 A
Vapor pressure (Bar) A
40
4.4
0.1217
0.00839
100
37.8
0.9492
0.06546
180
82.2
7.510
0.5179
212
100
14.696
1.0135
300
148.9
67.01
4.62
Satuan tekanan di sini yang digunakan adalah absolute bukan pressure gauge, ini jamak dipakai tatkala kita berbicara mengenai sisi isap pompa untuk menghindari tanda minus. Maka saat menyebut tekanan atmosfir nol, kita katakan 1 atm sama dengan 14,7 psia pada permukaan air laut dan pada sistim metrik kita biasa memakai 1 bar atau 100 kPa.
Kita balik ke paragraf pertama untuk menjelaskan akibat dari kavitasi, sehingga kita lebih tahu apa sesungguhnya yang terjadi.

Kapasitas Pompa Berkurang
  • Ini terjadi karena gelembung-gelembung udara banyak mengambil tempat(space), dan kita tidak bisa memompa cairan dan udara pada tempat dan waktu yang sama. Otomatis cairan yang kita perlukan menjadi berkurang.
  • Jika gelembung itu besar pada eye impeller, pompa akan kehilangan pemasukan dan akhirnya perlu priming (tambahan cairan pada sisi isap untuk menghilangkan udara).
Tekanan (Head) kadang berkurang
Gelembung-gelembung tidak seperti cairan, ia bisa dikompresi (compressible). Nah, hasil kompresi inilah yang menggantikan head, sehingga head pompa sebenarnya menjadi berkurang.

Pembentukan gelembung pada tekanan rendah karena mereka tidak bisa terbentuk pada tekanan tinggi.
Kita harus selalu ingat bahwa jika kecepatan fluida bertambah, maka tekanan fluida akan berkurang. Ini artinya kecepatan fluida yang tinggi pasti di daerah bertekanan rendah.
Ini akan menjadi masalah setiap saat jika ada aliran fluida melalui pipa terbatas, volute atau perubahan arah yang mendadak. Keadaan ini sama dengan aliran fluida pada penampang kecil antara ujung impeller dengan volute cut water.

Bagian-bagian Pompa Rusak
  • Gelembung-gelembung itu pecah di dalam dirinya sendiri, ini dinamakan imploding kebalikan dari exploding. Gelembung-gelembung itu pecah dari segala sisi, tetapi bila ia jatuh menghantam bagian dari metal seperti impeller atau voluteia tidak bisa pecah dari sisi tersebut, maka cairan masuk dari sisi kebalikannya pada kecepatan yang tinggi dilanjutkan dengan gelobang kejutan yang mampu merusak part pompa. Ada bentuk yang unik yaitu bentuk lingkaran akibat pukulan ini, dimana metal seperti dipukul dengan 'ball peen hammer'.
  • Kerusakan ini kebanyakan terjadi membentuk sudut ke kanan pada metal, tetapi pengalaman menunjukan bahwa kecepatan tinggi cairan kelihatannya datang dari segala sudut.
Semakin tinggi kapasitas pompa, kelihatannya semakin mungkin kavitasi terjadi. Nilai Specific speed pump yang tinggi mempunyai bentuk impeller yang memungkinkan untuk beroperasi pada kapasitas yang tinggi dengan power yang rendah dan kecil kemungkinan terjadi kavitasi. Hal ini biasanya dijumpai pada casing yang berbentuk pipa, dari pada casing yang berbentuk volute seperti yang sering kita lihat.