Translate

21 January 2014

CARA PERAWATAN MOBIL RINGAN


Mobil merupakan sarana transportasi canggih yang bisa mempermudah segala kegiatan anda, dan menghindarkan anda dari panasnya terik matahari. Maka sudah sewajarnya anda membalas jasa-jasa mobil anda dengan memberikan perawatan terbaik.
Perawatan mobil secara berkala dapat membuat mobil anda awet dan selalu terlihat baru. Yang terpenting adalah anda akan terhindar dari kecelakaan yang disebabkan mesin error.
Mobil yang terawat juga akan menghasilkan performa prima saat berkendara. Menarik bukan?
Mahalnya biaya perawatan mobil sering dijadikan alasan oleh para pengemudi untuk tidak merawaat mobilnya secara baik. Namun jika anda tahu caranya, merawat mobil akan sangat mudah, hemat, dan efisien.
Kendaraan yang kurang terawat merupakan salah satu faktor terbesar kedua setelah kelalaian pengemudi penyebab kecelakaan di jalan. Lakukan pengecekan secara rutin terutama saat akan melakukan perjalanan yang cukup jauh, kondisi mobil harus benar benar baik dan memang layak untuk melakukan perjalanan tersebut.  Perhatikan kondisi mesin, ban dan lampu karena tiga bagian tersebut merupakan bagian paling penting terhadap mobil. Melakukan perawatannya pun tidak harus pergi ke bengkel, anda pun bisa melakukan perawatan dasar sendiri.  Berikut beberapa tips untuk menjaga mesin mobil Anda selalu dalam keadaan baik :

  • Mengecek Starter Pada Mobil.
    Bila mobil tidak bisa di-starter adalah karena suplai bahan bakar/udara yang kurang pada sistem karburator (dalam hal ini berarti saringan karburator kotor). Periksa saringannya, cabut filter-nya dan bersihkan dengan kuas atau sikat gigi. Jangan gunakan alat pemanas seperti hair-dryer dan sejenisnya, karena hal tersebut bisa merusak dinding saringan udara.Bila semuanya sudah dilakukan dan tidak ada perkembangan, bawalah mobil Anda ke bengkel terdekat.
  • Oli merupakan sesuatu yang vital bagi mesin Mobil.
    Anda mengganti oli mobil setiap 3.000 sampai 5.000 mil. Mesin Anda akan mulai membuat suara-suara aneh jika tidak dilakukan penggantian oli. Ketika melakukan ganti oli, pastikan Anda mengubah filter oli juga. Ini akan tidak ada gunanya jika Anda menjalankan minyak bersih melalui filter oli kotor.
    Oli berperan mengurangi gesekan2 internal di dalam mesin. tanpa adanya oli,gesekan2 ini akan membuat komponen mesin2 tertentu cepat rusak atau aus.Dengan kata lain,keberadaan oli akan membuat mesin lebih awet.pada dasarnya sebuah Mobil memerlukan oli dengan kekentalan tertentu. akibat adanya pembakaran didalam mesin ketika Mobil akan dijalankan akan membuat tingkat kekentalan oli berubah,sehingga dalam waktu tertentu kekentalan oli berubah,sehingga dalam waktu tertentu kekentalan oli di dalam mesin tidak lagi sesuai dengan kondisi internal mesin.Oleh karna itu,penggantian oli mesin mobilharus dilakukan secara rutin berdasarkan jarak tempuh kendaraan.
  • Periksa Keadaan Radiator Mobil Pribadi
    Radiator pada mesin mobil berperan untuk menjaga suhu mesin tetap dingin, artinya radiator merupakan komponen yang berfungsi untuk menjaga mesin agar tidak cepat panas (over heating). Dengan rutin memeriksa radiator yang meliputi pemeriksaan kebocoran,pengurasan,dan penggantian air, maka performa radiator akan tetap terjaga,sehingga tugasnya sebagai pendingin mesin akan tetap terjaga.Idealnya penggantian atau pengurasan air radiator dilakukan untuk setiap jarak tempuh sekitar 10.000 km.
  • Periksa Timing Belt
    timing belt merupakan sabuk yang berfungsi untuk meneruskan putaran roda2 gigi yang terhubung ke bagian internal mesin.Timing belt yang rusak ditandai dengan menimbulkan suara2 dengungm yang bising ketika mesin mulai dijalankan.kerusakan timing belt yang di biarkan berlarut akan menyebabkan timing belt tersebut putus dan putusnya timing belt secara tiba2 akan membuat komponen2 tertentu pada mesin rusak.selain itu,suplay listrik pada akumulator bisa tidak maksimal.
  • Lakukan Tune Up secara rutin
    Tune Up rutin di bengkel2 akan membuat mesin tetap awet,hal ini karena pada proses tune up keadaan komponen2 vital yang berhubugan dengan mesin seperti busi,filter bahan bakar dan oli akan terperiksa.
  • Sesekali Lakukan Penarikan Gas dengan Kuat
    Penarikan gas yang kuat ketika kendaraan melaju dapat membuat kerak pada ruang pembakaran semakin berkurang,tetapi lakukan hal ini sesekali saja.Semoga tips ini dapat menjaga mesin anda lebih awet dan terawat.

Hal yang juga perlu diperhatikan adalah sistem kelistrikan mobil, konvensional ataukah mobil modern yang sudah menggunakan CDI (dalam arti serba elektronik). Bila mobil Anda telah menggunakan sistem serba elektronik, jangan berusaha untuk membetulkannya secara manual karena sistem ini membutuhkan ahli mekanik yang handal serta peralatan yang hanya ada di bengkel-bengkel mobil.
Biasanya ada dua hal yang menjadi penyebab mobil tidak bisa di-starter,

  • Pertama adalah karena aki yang sudah dalam kondisi kurang bagus sistem kelistrikannya.
  • Kedua adalah karena supply listrik pada dinamo pada sistem pengapian konvensional. Bila mobil tidak bisa di-starter adalah karena suplai bahan bakar/udara yang kurang pada sistem karburator (dalam hal ini berarti saringan karburator kotor). Periksa saringannya, cabut filter-nya dan bersihkan dengan kuas atau sikat gigi. Jangan gunakan alat pemanas seperti hair-dryer dan sejenisnya, karena hal tersebut bisa merusak dinding saringan udara.Bila semuanya sudah dilakukan dan tidak ada perkembangan, bawalah mobil Anda ke bengkel terdekat.

Cara cepat koneksi internet


Nah berikut ini ada beberapa tips dan trik mengenai cara mempercepat koneksi internet :

1. Standarnya Windows membatasi 20% bandwith.
Lalu bagaimana menyiasatinya? tanpa banyak basa-basi langsung praktek aja ya
Pertama-tama klik Start >> Run >> type gpedit.msc

Local Computer Policy >> Computer Configuration >> Administrative Templates >> Network >> QOS Packet Scheduler >> Limit Reservable Bandwidth
Double click pada Limit Reservable Bandwidth. Disana ditunjukkan bahwa string ini belum diatur (not configured), pada tab Explain ada penjelasan :
“By default, the Packet Scheduler limits the system to 20 percent of the bandwidth of a connection, but you can use this setting to override the default.”
Jadi Trik yang kita lakukan adalah mendisablenya dengan mengeset nilainya menjadi NOL.

2. Membuat Internet Explorer (IE) secepat Firefox
Banyak yang bilang IE memang browser yang paling payah, lelet, dan tidak stabil. Tapi ternyata ada trik untuk sedikit men-tune-up IE anda hingga kecepatannya bisa setara dengan Firefox. Caranya :
* Klik start >> run
* ketik regedit >> enter
* Carilah folder HKEY_CURRENT_USER\Software\Microsoft\Windows\Curre ntVersion\InternetSettings
* Klik kanan pada jendela sebelah kanan pilih >> New >> DWORD
* Ketik MaxConnectionsPerServer >> beri nilai terserah sobat (semakin tinggi nilai yang sobat buat, semakin bagus kecepatannya, eg : 99)
* Buat string DWORD baru lagi dengan cara yang sama >> ketik MaxConnectionsPer1_0Server
* Lalu beri nilai yang tinggi seperti di atas
* restart IE..
Selesai..

3. Mempercepat browsing dengan DNS cache
Buka notepad dan copy paste kode di bawah ini :
[HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServic es|DnscacheParameters]
“CacheHashTableBucketSize”=dword:00000001
“CacheHashTableSize”=dword:00000180
“MaxCacheEntryTtILimit”=dword:0000fa00
“MaxSOACacheEntryTtILimit”=dword:0000012d
Simpan dengan nama dnscache.reg
Double click file ini di windows explorer, tekan “yes”.

4. copy paste kode di bawah ini ke dalam notepad. Simpan dengan nama “cepat.reg”
REGEDIT4
[HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesT cpipParameters]
“SackOpts”=dword:00000001
“TcpWindowSize”=dword:0005ae4c
“Tcp1323Opts”=dword:00000003
“DefaultTTL”=dword:00000040
“EnablePMTUBHDetect”=dword:00000000
“EnablePMTUDiscovery”=dword:00000001
“GlobalMaxTcpWindowSize”=dword:0005ae4c

5.  Mempercepat Koneksi Internet bagi pengguna koneksi LAN
Berikut ini cara untuk mempercepat koneksi LAN :
* buka registry editor (start >> run >> ketik regedit)
* masuk ke HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Curr entVersion\Explorer\RemoteComputer\NameSpace dan DELETE key {D6277990-4C6A-11CF-8D87-00AA0060F5BF)
* Tutup registry editor dan restart windows.

6. Bagi pengguna koneksi internet dengan Broadband/DSL cobalah trik berikut ini
Buka registry editor dan masuk ke :
HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesT cpipParameters
Buat string DWORD baru, dengan cara mengklik ‘Edit >> New >> DWORD Value’ dan buat nama-nama value dibawah ini :
DefaultTTL = “80? hex (atau 128 decimal) .
EnablePMTUBHDetect = “0?
EnablePMTUDiscovery = “1?
GlobalMaxTcpWindowSize = “7FFF” hex (or 32767 decimal)
TcpMaxDupAcks = “2?
SackOpts = “1?
Tcp1323Opts = “1?
TcpWindowSize = “7FFF” hex (or 32767 decimal)
tutup registry dan restart computer.

7. Jika semua cara di atas sudah dilakukan, namun koneksi tidak ada perubahan alias masih lambat bin lemot bin lelet berarti sudah saatnya Beralih ke provider yang lebih canggih

Cara Restart Tablet Android

Kira2 caranya kayak gini..

1. Matikan PC Tablet,
2. Tekan dan Tahan Volume Up + Down + Power secara bersamaan
3. PilihFactory reset / wipe data dan tekan tombol menu Home pada tab



4. Pilih Dellete all User Data, tunggu bentar aja...
5. Reboot..
selesai, semoga bermanfaat.

Catatan : Pada saat Melakukan Restarting kudu batrenya full, tanpa di carg.

13 January 2014

SEAL OLI

Pengertian sederhana dari SEAL OLI adalah komponen pada suatu mesin atau Gearbox yang berfungsi menyekat pelumas. Pelumas digunakan pada tempat-tempat dimana terjadi gesekan pada bagian mesin untuk memastikan pergerakkannya menjadi halus dan umurnya menjadi panjang, dan seal oli digunakan untuk mencegah terjadinya kebocoran pelumas yang lewat melalui “bearing clearance” pada bagian yang bergerak tersebut.

Lebih lanjut dalam hubungannya dengan tehnik mesin, oil seal selain dipakai untuk mencegah kebocoran pelumas, juga dapat dipakai untuk mencegah kebocoran air (water), chemical, juga baik untuk mencegah debu atau kotoran masuk kedalam mesin. Oil seal dapat digunakan untuk melakukan fungsi tersebut sekaligus.

O-ring, lip packing, gland, dan mekanikal seal lainnya fungsinya sama seperti oil seal seperti ditunjukan pada gambar dibawah ini. Seal oli sebagian besar sering dipakai untuk aplikasi shaft yang berputar.
Berikut ini adalah diagram pengelompokkan seal menurut NOK corporation.

 
FUNGSI BAGIAN-BAGIAN DARI SEAL

Pada gambar dibawah ditunjukan komponen utama dari Seal oli dan pada table dibawahnya dijelaskan fungsi dari bagian-bagian Seal oli tersebut.


 
MEKANISME SEALING DARI OIL SEAL

Bagaimana oil seal menyekat fluida…? Apakah factor pelumasan pada ujung kontak lip seal membuat umur seal menjadi tahan lama…?

Pada suatu uji coba oil seal yang dipasang pada shaft yang berputar, kemudian diukur gaya friction rotation nya dengan memutar shaft pada kondisi yang berubah-ubah seperti pada gambar dibawah.


Hubungan antara non dimension duty parameter “G” (yang ditentukan oleh bentuk dari seal dan kondisi yang digunakan), dengan coefisien of friction “F” ditunjukan pada grafik dibawah ini.

KARAKTERISTIK FRICTION DARI ROTATING SHAFT OIL SEALS (f vs G)

                                       Shaft speed: 10 – 1500 rpm 
 

Hasil dari grafik tersebut menerangkan bahwa, coefisien gesek akan meningkat jika viscositas olinya tinggi, karena lapisan oil film dibawah lip yang kontak dengan shaft akan semakin kecil. Dengan kata lain, lip oil seal dan shaft yang licin yang diberi lapisan oil film akan mengurangi keausan.

Material dari Lip juga merupakan sebuah factor penting yang membuat ketidak beresan sliding surface dari oil seals. Pada gambar dibawah dijelaskan hubungan dua buah material lip yang berbeda dalam mempengaruri texture sliding surface shaft.

Dua elemen kritikal yang dijelaskan diatas, sangat penting dalam mengontrol performance dari oil seal, karakteristik pelumasan dan mekanisme sealing yang seimbang dikontrol oleh dua factor yaitu material dan bentuk lip. Oleh karena penggunaan material seal sangat penting untuk mempertahankan sirkulasi aliran oli pada area kontak lip dan kebutuhan lapisan oil film dibawah seal lip harus dikontrol.

CARA MERUBAH PUTARAN PADA PENGGERAK


A. GEAR (GEAR TUNGGAL)

Pada suatu penggerak biasanya menggunakan gear yang fungsinya adalah merubah putaran dari maju menjadi mundur ataupun sebaliknya, fungsi gear juga bisa merubah kecepatan dari lambat menjadi kencang dan sebaliknya.
Seperti kita ketahui bahwa kapasitas mesin juga berbeda-beda yang tak lepas dari prinsip kerja dari mesin itu sendiri.  Kapasitas berhubungan erat dengan speed (kecepatan) mesin tersebut, sedangkan speed mesin tergantung suatu sistim ’Penggerak’ (Drive). ’Penggerak’ ini lebih identik dengan ’Putaran’ seperti pada Motor Induksi.

Dari Putaran inilah suatu mesin yang menggunakan gear dapat kita ketahui speednya, tentunya pembaca sudah pernah mengetahui bagaimana caranya !. Di sini saya mengulas dengan sangat sederhana cara mengetahui ”Speed” dengan mengambil contoh ’Mesin Conveyor’, dimana mesin tersebut lebih banyak mengutamakan ”Rasio Gir” sebagai acuan menentukan Maksimum speednya.

Rumus :


 nz1 x z1 = nz2 x z2



nz1 = putaran gir pemutar                : Rpm
nz2 = putaran gir yang diputar         : Rpm
z1   = jumlah gigi pd gir pemutar      : Z
z2   = jumlah gigi pd gir yg diputar   : Z

Contoh :
”Motor induksi + reducer” dipasang gir rantai dan dihubungkan dengan gir ”Roll” pada ”Conveyor belt”.
Dimana gir pada ”Motor induksi + reducer” jumlah gigi girnya = 20 Z, putaran = 70 Rpm,
Sedangkan jumlah gigi gir pada ”Roll conveyor belt” = 16 Z.
Berapa Rpm pada ”Roll conveyor belt” tsb.


Penyelesaian :

nz1 =  70  Rpm
nz2 =  ?    Rpm
z1   =  20  Z
z2   =  16  Z


 nz2 = (nz1 x z1) / z2

          = (70 x 20) / 16
          = 1400 / 16
          = 87,5 Rpm (Rotation per menit) atau putaran per menit

Dari contoh mesin Conveyor di atas bahwa putaran (rpm) roll penggerak (roll yang menarik belt) adalah 87,5 artinya ‘roll tersebut akan menarik belt dengan kecepatan 87,5 putaran dalam 1 (satu) menitnya’. 



B.RATIO GEAR

Gear ratio/Reduction ratio dapat kita definisikan sebagai perbandingan antara jumlah putaran yang dihasilkan oleh gear input (drive gear) terhadap jumlah putaran gear output (driven gear) yang berbeda ukuran. Contoh, jika gear input berputar sebanyak 3 putaran, sedangkan gear output berputar sebanyak 1 putaran, maka gear rationya adalah 3:1. Artinya jumlah putaran gear output "direduksi" sebanyak 3 kali, sehingga putaran gear output "berkurang" sebanyak 3 kali putaran gear input.

Formula yang dapat digunakan untuk mengitung gear ratio antara dua buah gear, adalah:
N1 x Z1 = N2x Z2

Dimana:
N1 = Jumlah putaran gear input
Z1 = Jumlah teeth gear input
N2 = Jumlah putaran gear output
Z2 = Jumlah teeth gear output

Contoh perhitungan, apabila diketahui jumlah teeth pada gear input (Z1) = 25 teeth, jumlah teeth gear output (Z2) = 100 teeth dan putaran gear input (N1) diputar sebanyak 100 putaran. Berapakah gear rationya ?

Jawab:
N1 x Z1 = N2 x Z2
100 x 25 = N2 x 100
25000 = N2 x 100
N2 = 2500 : 100
N2 = 25
Sehingga gear rationya kita dapatkan N1 : N2 = 100 : 25 = 4 : 1, atau bisa juga dituls 4 nya saja.

Contoh diatas adalah untuk susunan dua buah gear saja, sekarang bagaimana kalau gear yang disusun lebih dari dua buah ?
Formula yang digunakan untuk mencari gear ratio antara gear yang lebih dari dua adalah:
N2 = N1 x (Z1:Z2) x (Z3:Z4)

Contoh perhitungan, berapakah gear ratio untuk 4 buah gear yang disusun sedemikian rupa dengan diketahui:
Z1 = 12 teeth
Z2 = 45 teeth
Z3 = 12 teeth
Z4 = 55 teeth
N1 = 100 putaran

Jawab:
N2 = N1 x (Z1:Z2) x (Z3:Z4)
N2 = 100 x (12:45) x (12:55)
N2 = 100 x 0.267 x 0.218
N2 = 5.821

Setelah putaran gear diketahui, maka gear rationya adalah = N1 : N2 = 100 : 5,821 = 17,179 :1, atau 17,2 : 1 atau ditulis 17,2 saja.


Ratio gear ini akan menentukan percepatanyang dihasilkan dari kombinasi gigi - gigi pada transmisi , pada masing - masing tingkat percepatan. Pada tranmisi sepeda motor umumnya menggunakan kombinasi dua gear untuk menghasilkan suatu tingkat percepatan .sementara pada mobil umumnyamenggunakan kombinasi empat gigi atau lebih untuk menghasilkan satu tingkat percepatan. Misalkan pada kecepatan gigi 1 , maka perubahan percepatan dari kopling ke poros keluaran transmisi menggunakan kombinasi 4 gigi ( untuk mobil). Gigi - gigi inimemiliki jumlah mata gigi yang berbeda pada tiap - tiap gigi. Jumlah mata gigi yang berbeda - beda inilah yang akan menghasilkan perbedaan putaran dan tenaga padatransmisi.Sekarang saya akan langsung saja membahas cara menghitung ratio gear pada transmisi :
1. kombinasi 2 gigi
Untuk kombinasi dua gigi kita menggunakan rumus :ratio gear = B : A
2. kombinasi 4 gigi
Untuk kombinasi 4 gigi kita menggunakan rumus :ratio gear = (B : A ) x ( D : C )
3.kombinasi 5 gigi
Untuk kombinasi lima gigi kita menggunakan rumus ;ratio gear = ( B : A ) x (E : C ) x ( D : E )
Contoh :
jumlah roda gigi A adalah 10 , B = 30 , C =20 , D = 40ratio gear = ( 30 : 10 ) x ( 40 : 20 )= 3 x2= 6Jadi ratio gearnya adalah 6 , maksudnya adalah 6 kali putaran kopling akan menghasilkan1 kali putaran output pada poros keluaran transmisi.Demikianlah penjelasan saya mengenai cara menghitung ratio gear transmisi. Silahkan mencoba, semoga dengan ini anda dapat menghitung ratio trnasmisi seperti yang anda butuhkan.



C. RATIO PULLEY  

Pully adalah elemen mesin yang berfungsi mentransmisikan daya dari motor ke poros dengan menggunakan sabuk.Pully dapat dibuat dari besi tuang, baja yang dicetak.Pully  pada umumnya terbuat dari besi tuang karena harganya yang murah.
Diameter pully yang digerakkan, dirumuskan :
D2 =  diameter pully yang digerakkan ( mm )
D1 = diameter pully penggerak ( mm )
 n1 =  Putaran pully penggerak ( mm )
n2 =  Putaran pully yang digerakkan ( mm )
Diameter kepala pully dirumuskan :      De = Dp + 2k
Dp = diameter pully penggerak ( mm )
k   = tinggi kepala
Lebar pully dirumuskan :   b = 2 . f  
b = Lebar pully ( mm )
f = konstanta
Volume pully dirumuskan :
b = Lebar pully ( mm )
f = konstanta
Volume pully dirumuskan


de = diameter kepala pully ( mm )
b   = lebar pully ( mm )

Berat pully dirumuskan :       W = V . ρ              ( Sularso,1985 )
Dimana :
V = volume ( m3 )
 ρ = massa jenis ( kg/m3 )
aluminiun    = 2,8 x 103 kg/m3


12 January 2014

Bearing Grease Replenishment Intervals

In simple terms, here’s what one respected bearing manufacturer has to say about a very basic, but critical, topic. 

Increased operating costs, unplanned downtime and loss of productivity can all result from premature bearing failure. Although such events can occur for a number of reasons, one of the most common is lubrication failure. Following a proper lubrication schedule and using the correct lubricant type can improve performance and extend bearing life.
Lubrication reduces friction and wear by providing an oil coating that adheres to the rolling elements and raceways of bearings that are constantly in contact. The oil film separates the contact surfaces and prevents metal-to-metal contact, which reduces wear. Proper lubrication also helps prevent foreign material from entering the bearing and guards against rust and corrosion.
Grease lubrication scheduleOver time, grease will deteriorate due to physical and chemical degradation. The reduced lubrication properties will negatively impact bearing performance. Efforts must be made to renew the grease through replenishment. Figure 1 below reflects the replenishment time intervals for various bearing types running at different speeds. Charts (1) and (2) in the figure are applied based on the use of high-quality lithium soap-mineral oil grease, a maximum bearing temperature of 70 C and a normal load (P/C = 0.1, meaning 10% of the bearing dynamic load rating Cr). Replenishment is ONLY an option if the bearings are not sealed and provisions exist in the equipment for adding grease. Shielded bearings must be re-lubricated carefully. Damage can occur if excessive pressure is used, causing bearing deformation.
1112feattwo2small
Fig. 1. Grease replenishment intervals (click to enlarge)

Factors affecting replenishment intervalsGrease replenishment time intervals are subject to factors that vary the recommendation—factors that can either extend or diminish the period of acceptable grease performance. These include:
  • Bearing operating temperature
  • Grease type
  • Load
  • Presence of dust and moisture
  • Shock loads and vibration
Bearing operating temperature greatly influences lubrication life. As a general rule, if the bearing temperature exceeds 70 C, the replenishment time interval must be reduced by half for every 15 C degree temperature rise of the bearing.
Consider this example of two electric motors: One unit operates indoors in an ambient environment of 25 C, with bearing temperatures of 60 C. The other motor operates outdoors in the Southwest United States in an ambient environment of 45 C, with bearing temperatures of 100 C. The hotter motor will require re-lubrication four times more often than the first motor to maintain the lubricant. Why four times? The motor running at a higher bearing temperature is 30 C above 70 C, meaning the replenishment interval is cut in half two times (or one quarter of the time).
Grease base oil and thickener types have an impact on how often re-lubrication is necessary. For instance, a ball bearing might use grease with the same lithium soap thickener as referenced on the interval chart (shown below), or it might use a synthetic mineral base oil that can last about twice as long. Other thickeners, such as diurea, polyurea and PTFE, have properties related to operating temperature and resistance to shearing, as well as an ability to release and re-absorb base oil—
which can also modify replenishment recommendations.
Load factor is a determinant of lubrication replenishment in that it corresponds to the equivalent load (P) on the bearing shown in chart (3) of Fig. 1. The equivalent load at the bearing is determined from the radial and axial loads along with relationships detailed in the manufacturer’s catalog for each bearing. For loads less than or equal to 6% of the bearing dynamic load rating (Cr), the replenishment interval increases by a 1.5 multiplier. As load increases, the load factor drops to less than one, which calls for more frequent lubrication. Should P/C exceed 0.16, it’s advisable to consult the bearing manufacturer.
Environmental factors may reduce recommended replenishment intervals. Elevated vibration levels within the bearing increase the release of base oil, reducing the number of times before oil must be renewed. Dust, dirt or application contaminants such as wood fibers or metal shavings can become trapped in the grease and come into contact between the rolling elements and raceways of a bearing. These contaminants break through the oil film, which creates more friction. Ultimately, friction damages the raceways and and reduces grease life. Another important and common environmental factor is the presence of moisture. It can occur by direct spray, vapor or condensation within the bearing. Depending on the magnitude of water present, the re-lubrication interval can be reduced by half—or more. LMT
To learn more about bearing lubrication and replenishment intervals, visit www.nskamericas.com and download NSK’s Lubrication Interval Guide or contact your local NSK representative.

Bearing Manufacturing for Diverse Industries

Milwaukee Bearing Manufacturing For Industries Throughout the US

Bearing Manufacturing capability of custom bearings from 1.00” in diameter to 80.000”.
From compressor bearings for companies in the gas and oil industry and babbit bearings and bushings for energy automation to high and low pressure babbited seals for the marine industry and custom machined parts for the mining industry, Milwaukee Bearing and Machining has been the leading custom machining and bearing manufacturing company for industrial bearings throughout the US.

Bearing Manufacturing for the Gas and Oil Industry

babbitted bearings for Oil Gas Industry
High quality bearings in the gas and oil industry ensure optimum operational functionality during exploration, drilling and production.  Milwaukee Bearing and Machining is the top bearing manufacturing company providing the first rate compressor bearings, Babbitt bearings, pump bearings and rotor bearings oil and gas companies have been relying on for years.  Our well crafted bearings ensure your drills, pumps, compressors, turbines and other machinery runs smoothly, dependably and safely.  Choosing Milwaukee Bearing and Machining for custom bearing manufacturing for the gas and oil industry means increased longevity and reduced maintenance time.  

Custom Bearings Manufactured for the Gas and Oil Industry

  • Bearings for compressors
  • Machined parts for compressors
  • High impact pump bearings
Minimize lost profits due to down time by contacting Milwaukee Bearing and Machining, the leading bearing manufacturing company, for dependable bearings manufactured to withstand harsh environments associated with your oil and gas component’s specific needs. 

Bearing Manufacturing and Machining for the Marine Industry

bearing manufacturing for marine
Bearings and seals in the marine industry require a high standard of quality and reliability.  Milwaukee Bearing and Machining is the bearing manufacturing company producing drive shaft bearings and Babbitted seals with the unrivaled performance and dependability necessary in marine operations.  Our high load and high impact marine bearings are molded and machined for highly accurate dimensions to stand up to the high pressures put on a ship’s engine while moving massive amounts of weight.  High and low pressure Babbitted seals manufactured by Milwaukee Bearing and Machining effectively control lubricant flowage and prevent internal engine leakage, keeping your marine operations environmentally safe.  Utilizing our dependable drive shaft bearings and pressure seals minimizes breakdowns causing high maintenance costs and down time.  Milwaukee Bearing and Manufacturing has the pressure seals and Babbitt bearings maintaining your marine operations’ efficiency and longevity.

Custom Bearing Solutions Manufactured for the Marine Industry

  • High and low pressure Babbitted seals
  • Babbitted bearings
  • Bronze Backed Plated Bushings
Contact the number one bearing manufacturing company, Milwaukee Bearing and Machining, to learn how our durable Babbitt bearings and seals keep your marine operations running smoothly.

Bearing Manufacturing for Power Generation Industry

machining for power Generation
Power generation bearings commonly fail due to oil, water, dust and other contaminants entering the bearing housing.  Milwaukee Bearing and Machining offers complete bearing manufacturing solutions ensuring your wind turbines or oil drilling rig is running smoothly and efficiently.  Avoid bearing failure caused by contaminations in the bearing housing with high quality bearing seals from Milwaukee Bearing and Machining.  We offer custom bearing solutions designed to keep your power generation equipment running efficiently and free of contaminants.  From rotor tip seal holders and bearing seals to bearing housings and seal housings, Milwaukee Bearing and Machining provides top notch bearing manufacturing to maintain solid performance in the power generation industry.  Choosing reliable bearing solutions from Milwaukee Bearing and Manufacturing minimizes maintenance costs and downtime keeping your company operating at optimum efficiency.

Custom Bearing Solutions for the Power Generation Industry

  • Seal holders
  • Rotor tip seal holders
  • Honeycomb
  • Fabrications
  • Bearings
  • Seals
  • Bearing housings
  • Seal housings
Contact Milwaukee Bearing and Machining for the complete bearing manufacturing solutions keeping your power generation equipment uncontaminated and functioning at optimal levels.

Bearing Manufacturing for Energy Automation

energy Automation
 High quality bearing manufacturing for the energy automation industry ensures your energy automation equipment continues to run smoothly and efficiently.  Milwaukee Bearing and Machining is the premiere bearing manufacturing company providing top quality Babbitted bearings, bushings and oil lubrication rings energy automation systems have depended on to keep their machines at optimal functionality for years.  In an industry where energy efficiency is the name of the game, our dependable bearing manufacturing solutions keep your energy automation machines functioning reliably and at maximum effectiveness.  Where the need for durable equipment is so high, Milwaukee Bearing and Machining delivers the sturdy bearing manufacturing solutions increasing your equipment’s longevity.

Custom Bearing Manufacturing Solutions for the Energy Automation Industry

•    Babbitted Bearings
•    Bushings
•    Oil Lubrication Rings
•    Insulated Sleeves for Large Electric Motors
Maximize efficiency and minimize down time with highly durable bearing solutions to perform in the energy automation industry by contacting Milwaukee Bearing and Machining, the top quality bearing manufacturing company.

Bearing Manufacturing for the Mining Industry

babbitted bearings manufacturing for the mining Industry
Equipment in the mining industry requires bearing manufacturing solutions with unrivaled strength and dependability.  Milwaukee Bearing and Machining is the bearing manufacturing company providing the high impact, reliable bearing solutions keeping quarry and mining operations running steadily and efficiently.  The machinery used in a mining operation endures a lot of stress in harsh conditions.  Milwaukee Bearing and Machining manufactures bearings able to withstand the conditions without failing due to flaking, surface wear or slippage.  Milwaukee Bearing and Machinery understands downtime in the mining industry means millions of dollars in lost production and provides the strong, long lasting bearing manufacturing solutions able to endure the stress put on mining equipment.  We produce the high quality bearing seal solutions keeping dirt and dust out of crucial areas keeping your rock crushers, diggers and other quarry equipment running efficiently and reliably.

Custom Bearing Manufacturing Solutions for the Mining Industry

•    Rock Crushers
•    Components
•    Counterweights
•    Eccentric Bushings
•    Bearing Plates
•    Gear Boxes
•    Shafts

Avoid costly downtime and maintain your mining equipment’s longevity and effectiveness, contact the bearing manufacturing experts at Milwaukee Bearing and Machining for durable bearings made to last. 

Bearing Manufacturing for Pumps

machining for pumps
Bearings in pump applications must retain maximum efficiency and precision while being subjected to high loads, high rotation speeds and high pressures.  Bronze and steel backed Babbitted bearings and tri-metal bearings from Milwaukee Bearing and Machining have the high dynamic load capacities, corrosion resistance and overall durability to perform reliably and effectively in all pump applications.  Minimizing bearing failure by implementing our dependable bearing manufacturing solutions in pump applications avoids high maintenance costs and lost profits due to down time. 

Custom Babbitted Bearing Manufacturing Solutions for Pumps

•    Steel Backed Babbitted Half Shells
•    Bronze Backed Babbitted Half Shells
•    Bushings
•    Tri-Metal Bearings
•    Machined Parts
Contact the premier bearing manufacturing company, Milwaukee Bearing and Machining, to increase longevity and avoid high maintenance costs and lost profits during downtime by implementing highly durable Babbitted bearings and tri-metal bearings into your pump application today.

Bearing Manufacturing for Compression

babbit bearing manufacturing for compression

Bearings utilized in compression applications must maintain effectiveness and accuracy while enduring extremely high pressures, load range and rotation speeds.  Milwaukee Bearing and Machining provides the strong bearing manufacturing solutions able to stand up to these pressures with high dynamic load ranges and excellent running accuracy.  We manufacture the durable Babbitted bearings, bushings and tri-metal backed bearing halves capable of increased longevity and maximized efficiency in compression applications.  By choosing Milwaukee Bearing and Machining for your bearing manufacturing solutions you will experience less maintenance costs, avoid downtime and higher efficiency in all compression applications. 

Custom Bearing Solutions for Compression Applications

•    Bearings
•    Bushings
•    Machined Parts
•    Tri-Metals and Aluminum Backed Bearings Halves and Bushings
Maintain long lasting performance, reduce maintenance costs and avoid downtime by contacting Milwaukee Bearing and Machining and implementing our reliable bearing manufacturing solutions into your compression applications today.


Bearing Greasing Basics

One of the most important components of any electro-mechanical maintenance program is the lubrication of bearings. Yet, this vital aspect of preventive maintenance remains one of the least understood functions of maintenance. There is constant debate concerning whether a bearing should be ‘flushed,’ a limited amount of grease added, how often or if the motor should be operating or tagged-out. Many motor manufactures outline the preferred, and safest, method for lubricating electric motor bearings. There are specific physical properties for this process in the motor bearing housing and in order to protect motor windings from contamination.
Table 1: Amount of Grease to Use
Table 1 - Amount of Grease to Use

The general procedure for greasing is as follows:
1. Lock and tag out the electric motor
2. Wipe grease from the pressure fitting, clean dirt, debris and paint around the grease relief plug. This prevents foreign objects from entering the grease cavity.
3. Remove the grease relief plug and insert a brush into the grease relief as possible. This will remove any hardened grease. Remove the brush and wipe off any grease.
4. Add grease per Table 1.
5. Allow the motor to operate for approximately 30 to 40 minutes before replacing the grease relief plug. This reduces the chance that bearing housing pressure will develop.
Bearings should be lubricated at an average frequency as found in Table 2. Operational environment and type of grease may require more frequent lubrication.

Table 2: Bearing Lubrication Frequency

Table 2 - Bearing Lubrication Frequency

One concept that has been presented is that grease will eventually fill the bearing housing, causing the same problem as an overgreased bearing. We will be addressing this particular issue, as well as a discussion of why the motor should be de-energized during greasing, through this paper. We are limiting this paper to a standard deep-groove ball bearing without shields or seals.

How a Bearing Works


The most common type of bearing is the AFBMA-7 C-3 rated bearing. C-3 relates to the internal clearances of the surfaces of the bearing. In most motor rated bearings, there is a clearance of between 3-5 mils (thousandths of an inch) in which lubrication flows to reduce friction and wear of the machined surfaces. The bearing, itself, consists of an inner race, an outer race, balls and a cage which evenly distributes the balls. Common bearings are designed to allow for a radial load with some limited axial loading. ALL BEARINGS ARE LUBRICATED WITH OIL.

Grease, itself, is an oil sponge. The base (spongy) part of the grease varies depending on the manufacturer, temperature, environment and user preference. The grease holds the oil in suspension and allows the oil to flow during operation. The oil compresses between the bearing balls, inner and outer races and the cage, reducing friction. Ball bearings have small, microscopically rough surfaces on the balls, these surfaces move the oil, holding it to the ball during operation.

When too much grease is added, the grease is compressed between the bearing surfaces, increasing pressure and resulting with heat. Too little grease causes the surface friction to increase, resulting with heat. In any case, once bearing noise is audible, it has failed. Reducing noise by lubrication requires excessive grease, endangering the motor, and giving the technician the false security of extending the motor life when, in reality, additional damage is occurring to machined surfaces.

Bearings may also have shields or seals mounted on them. Bearing shields are metal fittings that have small clearances between the inner race of the bearing and contact the outer race on either side of the balls and cage. The small clearances near the inner race allows some oil and grease to move into the moving parts of the bearing, but prevents particles of large size from passing into the bearing potentially damaging machined surfaces. Sealed bearings have seal surfaces touching the inner race, while ‘non-contact’ sealed bearings have extremely close tolerances between the seal surface and the inner race preventing particles under several thousandths of an inch. Sealed, and some shielded, bearings are referred to as non-grease able bearings.

Figure 1 - Bearing Greasing



What Happens When The Bearing Is Greased With The Motor Running?


Oil is an ‘incompressible’ fluid, which is important when considering the developing issues within the bearing housing (Figure 1) while greasing an operating motor. The ‘soap,’ or grease medium, acts as a suspension in the oil, although grease is normally represented as a base with an oil suspension. This becomes an important issue in the physical world of hydrodynamics.

With the bearing housing partially filled with grease, grease is added to the housing. Some of the grease flows through the operating surfaces of the bearing, causing stress. The reduction of clearances causes an increase in friction within the bearings. This will cause the bearing temperature to increase as the bearing surfaces reject the grease medium. Once the temperature drops, the grease is no longer within the bearing surfaces and oil from the grease provides lubrication. The increase in temperature causes a reduction in grease viscosity, allowing it to flow freely, albeit slowly, and excess grease is rejected through the grease plug (grease out). The change in viscosity ensures that enough flow should occur, when the grease plug is removed, and the maintainer does not count on ‘grease relief plugs,’ the housing should remain less than full, regardless of the number of greasing operations.

Grease that comes into contact with the shaft, bearing cap opening or housing opening (usually less than 0.010 inches) becomes pumped through the openings due to Couetti Flow. This process is the result of a turning cylinder (motor shaft) with a close, stationary, cyclinder (shaft openings) and an incompressible fluid. The excess grease is literally pumped into the motor housing.

What Happens When The Motor Is Not Running?


In the type of bearing that we are discussing, the grease enters the bearing housing. Some grease comes into contact with the bearing surfaces. When the motor is restarted, this excess grease is ejected from the bearing. The temperature may briefly rise, then fall, once grease has passed through the bearing. The shear stresses and temperature reduce the viscosity of the grease, allowing it to flow.

While some grease is moved into the motor housing, due to Couetti Flow, the amount is considerably less than if the motor is operating.

Conclusion


Electric motor bearing greasing requires the motor to be de-energized during the procedure. The result is reduced risk of excess grease entering the electric motor stator, due to Couetti Flow, and reduced viscosity, due to heat. Combined with safety issues, proper lubrication can maintain the electric motor reliability. Therefore, a limited amount of grease should be added to the bearing housing periodically with the grease plug removed.

About the Author

Dr. Penrose is the President of SUCCESS by DESIGN Reliability Services, based in Old Saybrook, CT. He also serves as the Executive Director of the Institute of Electrical Motor Diagnostics (IEMD). Starting as an electric motor repair journeyman in the US Navy, Dr. Penrose lead and developed motor system maintenance and management programs within industry for service companies, the US Department of Energy, utilities, states, military, and many others. Most recently he led the development of Motor Diagnostic technologies within industry as the General Manager of the leading manufacturer of Motor Circuit Analysis and Electrical Signature Analysis instruments and training. Dr. Penrose taught engineering at the University of Illinois at Chicago as an Adjunct Professor of Mechanical and Industrial Engineering as well as serving as a Senior Research Engineer at the UIC Energy Resources Center performing energy, reliability, waste stream and production industrial surveys. Dr Penrose has coordinated US DOE and Utility projects including the industry-funded modifications to the US Department of Energy’s MotorMaster Plus software in 2000 and the development of the Pacific Gas and Electric Motor System Performance Analysis Tool (PAT) project. Dr. Penrose is a Past Vice-Chair of the Connecticut Section IEEE (Institute of Electrical and Electronics Engineers), a Past-Chair of the Chicago Section IEEE, Past Chair of the Chicago Section Chapters of the Dielectric and Electrical Insulation Society and Power Electronics Society of IEEE, is a member of the Vibration Institute, Electrical Manufacturing and Coil Winding Association, the International Maintenance Institute, NETA and MENSA. He has numerous articles, books and professional papers published in a number of industrial topics and is a US Department of Energy (US DOE) MotorMaster Certified Professional, a US DOE Pump System Specialist, NAVSEA RCM Level 2 certified, as well as a trained vibration analyst, infrared analyst and motor circuit analyst.